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Course Schedule 

   prof Moschitti  
   Today, 14:00-16:00 

 Friday, Tomorrow: 14:00-16:00, Room 201 

   Since November 12 

   Thursday and Friday: 14:00-16:00, Room 106 



Course Schedule (2) 

   prof Farid 
   A cycle of seminar lectures 

   Not completely sequential 
   Offer you to have a possibility to learn different topics 

   Monday, 13:30 - 15:30, classroom 104 
 Tuesday – sometime depending on the needs 
and on the availability of HL course 

   (classroom 108, 13:30-14:30) 



Content of Moschitti’s lectures 

   PAC Learning 
   VC dimension 

   Perceptron 
   Vector Space Model 
   Representer Theorem 

   Support Vector Machines (SVMs) 
   Hard/Soft Margin (Classification) 
   Regression and ranking 

   Kernels Methods 
   Theory and Algebraic properties 
   Linear, Polynomial, Gaussian 
   Kernel construction, 

   kernels for structured data (introduction) 
   Sequence, Tree Kernels  



Moschitti’s Lab 

Minimal schedule 
   Automated Text Categorization 
   Question Classification (Question Answering) 

Optional Topics 
   Semantic Role Labeling 
   Relation Extraction 
   Named Entity Recognition 
   Textual Entailment Recognition 



Reference Book + some articles 



Today 

   Introduction to Machine Learning 

   Decision Trees 

   Introduction to Probability  



   Anything is a function 
   From the planet motion 
   To the input/output actions of your computer 

   Therefore, any problem would be automatically 
solved 

Why Learning Functions Automatically? 



During your previous studies you have 
already tackled the learning problem 



Linear Regression 



Degree 2 



Degree  



Automatic Learning 

   Real Values: regression 

   Finite and integer: classification 

   Suppose to design the classification function for cat 
and dog categories: 
   2 classes 
   f(x)  {cats,dogs} 

   Given a set of examples of the two categories: 
   Features are extracted (height, mustaches, tooth 

type, number of legs). 
   Apply a learning algorithm 



Basic Learning Concepts 

   Positive and Negative examples 

   Feature representation 

   Learning Algorithm 

   Training and test set 

   Accuracy measurement 

   Can we learn any function? 

   Statistical Learning Theory 
   PAC learning 



Several Kinds of Learning Algorithms 

   Logic boolean expressions, (e.g. Decision Trees). 
   Probabilistic Functions, (Bayesian Classifier). 
   Separating Functions working in vector spaces 

   Non linear: KNN, neural network multiple-layers,… 
   Linear: SVMs, neural network with one neuron,… 

   These approaches are largely applied In 
language technology 

   Very Simple Example: Text Categorization 



Decision Trees 



Decision Tree (between Dogs/Cats)  

Taller than 50 cm? 

Short hair?  

No  yes 

No  

Mustaches? 

No  

Output: Dog Output: Cat 

Si  

Output: dog 

. . . 



Entropy-based feature selection 

   Entropy of class distribution P(Ci): 

   Measure “how much the distribution is uniform” 
   Given S1…Sn sets partitioned wrt a feature the 

overall entropy is: 



Example: cats and dogs classification 

   p(dog)=p(cat) = 4/8 = ½ (for both dogs and cats) 

   H(S0) = ½*log(2) * 2 = 1 

S0 



Has the animal more than 6 siblings? 

S0 
S1 

S2 

   p(dog)=p(cat) = 2/4 = ½ (for both dogs and cats) 

   H(S1) = H(S2) = ¼ * [½*log(2) * 2] = 0.25 

   All(S1, S2) = 2*.25 = 0.5 



Does the animal have short hair? 

S0 
S1 

S2 

   p(dog)= 1/4; p(cat) = 3/4 

   H(S2)=H(S1) = ¼ * [(1/4)*log(4) + (3/4)*log(4/3)]  = 
¼ * [½ + 0.31]  = ¼ * 0.81 = 0.20 

   All(S1,S2) = 0.20*2 = 0.40 (note that |S1| = |S2|)  



Follow up 

   hair length feature is better than number of 
siblings since 0.40 is lower than 0.50 

   Test all the features 

   Choose the best 

   Start with a new feature on the collection sets 
induced by the best feature 



Probabilistic Classifier 



Probability (1) 

   Let Ω be a space and β a collection of subsets of Ω 

   β is a collection of events 

   A probability function P is defined as: 



Definition of Probability 

   P is a function which associates each event E with a 
number P(E) called probability of E as follows: 

€ 

= P(Ei) if Ei ∧ E j = 0
i=1

∞

∑ ,  ∀i ≠ j



Finite Partition and Uniformly Distributed 

   Given a partition of n events uniformly distributed 
(with a probability of 1/n); and 

   given an event E, we can evaluate its probability as: 

€ 

P(E) = P(E ∧ Etot ) = P(E ∧ (E1∨ E2 ∨ ...∨ En )) =

P(E ∧ Ei) = P(Ei)
Ei ⊂E
∑i∑ =

1
nEi ⊂E

∑ =

1
n

1=
1
nEi ⊂E

∑ ( i : Ei ⊂ E{ }) =
Target Cases

All Cases



Conditioned Probability 

A B 

€ 

A∧B

   P(A | B) is the probability of A given B 
   B is the piece of information that we know 
   The following rule holds: 



Indipendence 

   A and B are indipedent iff: 

   If A and B are indipendent: 



Bayes’s Theorem 

Proof: 

€ 

P(A |B) =
P(A∧B)
P(B)

€ 

P(B | A) =
P(A∧B)
P(A)

€ 

P(A |B) =
[P(B | A)P(A)]

P(B)

(Def. of. Cond. prob) 

Def. of. Cond. prob 

€ 

P(A |B) =
P(B | A)P(A)

P(B)



Bayesian Classifier 

   Given a set of categories {c1, c2,…cn} 

   Let E be a description of a classifying example. 

   The category of E can be derived by using the following 
probability: 

€ 

P(ci | E) =
P(ci)P(E | ci)

P(E)

€ 

P(ci
i=1

n

∑ | E) =
P(ci)P(E | ci)

P(E)
=1

i=1

n

∑

€ 

P(E) = P(ci)P(E | ci)
i=1

n

∑



Bayesian Classifier (cont) 

   We need to compute: 
   the posterior probability: P(ci)  
   the conditional probability: P(E | ci) 

   P(ci) can be estimated from the training set, D.  
   given ni examples in D of type ci, then P(ci) =  ni / |D| 

   Suppose that an example is represented by m features: 

   The elements will be exponential in m so there are not 
enough training examples to estimate P(E |ci) 



Naïve Bayes Classifiers 

   The features are assumed to be indipendent 
given a category (ci). 

   This allows us to only estimate P(ej | ci) for each 
feature and category. 

  

€ 

P(E | ci) = P(e1∧e2 ∧∧em | ci) = P(e j | ci
j=1

m

∏ )



An example of the 
Naïve Bayes Clasiffier 

   C = {Allergy, Cold, Healthy} 

   e1 = sneeze; e2 = cough; e3 = fever 

   E = {sneeze, cough, ¬fever} 
Prob Healthy Cold Allergy 
P(ci)      0.9       0.05       0.05 

P(sneeze|ci)      0.1       0.9       0.9 
P(cough|ci)      0.1       0.8       0.7 
P(fever|ci)      0.01       0.7       0.4 



An example of the 
Naïve Bayes Clasiffier (cont.) 

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E) 

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E) 

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E) 

The most probable category is allergy 
P(E) = 0.0089 + 0.01 + 0.019 = 0.0379 

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50 

Probability Healthy Cold Allergy 

P(ci)      0.9       0.05       0.05 

P(sneeze | ci)      0.1       0.9       0.9 

P(cough | ci)      0.1       0.8       0.7 

P(fever | ci)      0.01       0.7       0.4 

E={sneeze, cough, ¬fever} 



Probability Estimation 

   Estimate counts from training data. 
   Let ni be the number of examples in ci 
   let nij be the number of examples of ci containing the 

feature ej, then: 

   Problems: the data set may still be too small. 
   For rare features we may have, ek, ∀ci :P(ek | ci) = 0. 



Smoothing 

   The probabilities are estimated even if they are not 
in the data 

   Laplace smoothing 
   each feature has a priori probability, p,  
   We assume that such feature has been observed in an 

example of size m. 



Naïve Bayes for text classification 

   “bag of words” model 
   The examples are category documents 
   Features: Vocabulary V = {w1, w2,…wm} 
   P(wj | ci) is the probability to have wj in a category i 

   Let us use the Laplace’s smoothing 
   Uniform distribution (p = 1/|V|) and m = |V| 
   That is each word is assumed to appear exactly one time in a 

category 



Training (version 1) 

   V is built using all training documents D 

   For each category ci  ∈ C 

      Let Di the document subset of D in ci  

      ⇒ P(ci) = |Di| / |D| 

   ni is the total number of words in Di  

      for each wj ∈ V, nij is the counts of wj in ci 

              ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)   



Testing 

   Given a test document X 
   Let n be the number of words of X 
   The assigned category is: 

     where aj is a word at the j-th position in X 

€ 

argmax
ci ∈C

P(ci) P(a j | ci
j=1

n

∏ )



Vector Spaces 



Definition (1) 

   A set V is a vector space over a field F (for example, the field of real 
or of complex numbers) if, given 

   an operation vector addition defined in V, denoted v + w (where v, w 
∈ V), and  

   an operation scalar multiplication in V, denoted a * v (where v ∈ V 
and a ∈ F),  

   the following properties hold for all a, b ∈ F and u, v, and w ∈ V: 
   v + w belongs to V. 

(Closure of V under vector addition.)  
   u + (v + w) = (u + v) + w. 

(Associativity of vector addition in V.)  
   There exists a neutral element 0 in V, such that for all elements v in V, 

v + 0 = v. 
(Existence of an additive identity element in V.)  



Definition (2) 

   For all v in V, there exists an element w in V, such that v + w = 0. 
(Existence of additive inverses in V.)  

   v + w = w + v. 
(Commutativity of vector addition in V.)  

   a * v belongs to V. 
(Closure of V under scalar multiplication.)  

   a * (b * v) = (ab) * v. 
(Associativity of scalar multiplication in V.)  

   If 1 denotes the multiplicative identity of the field F, then 1 * v = v. 
(Neutrality of one.)  

   a * (v + w) = a * v + a * w. 
(Distributivity with respect to vector addition.)  

   (a + b) * v = a * v + b * v. 
(Distributivity with respect to field addition.)  



An example of Vector Space 

   For all n Rn forms a vector space over R, with component-wise 
operations.  

   Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi, for 
i={1,2,3,...n} is a member of R={real numbers}. Let the field be 
R, as well. 
Define Vector Addition: 
For all v, w, in V, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn]. 
Define Scalar Multiplication: 
For all a in F and v in V, a*v=[a*v1,a*v2,a*v3,...,a*vn]. Then V is 
a Vector Space over R. 



Linear dependency 

   Linear combination: 
   α1 v1 + …+ αn vn = 0 for some α1…αn not all zero 
  ⇒ y = α1 v1 + …+ αn vn has a unique expression. 
   In case αi > 0 and the sum is 1 it is called convex 

combination 



Normed Vector Spaces 

   If V is a vector space over a field K, a norm on V is a function 
from V to R,  

   it associates each vector v in V with a real number, ||v||.  
   The norm must satisfy the following conditions: 

   For all a in K and all u and v in V,  
  1. ||v|| ≥ 0 with equality if and only if v = 0.  

 2. ||av|| = |a| ||v||.  
 3. ||u + v|| ≤ ||u|| + ||v||.  

   A useful consequence of the norm axioms is the inequality 
   ||u ± v|| ≥ | ||u|| - ||v|| |  

   for all vectors u and v. 



Inner Product Spaces  

   Let V be a vector space and u, v, and w be vectors in V and c 
be a constant.   

   Then, an inner product ( , ) on V is a function with domain 
consisting of pairs of vectors and range real numbers satisfying 
the following properties.   
  1.  (u, u)  >  0 with equality if and only if u  =  0. 
  2.  (u, v)  =  (v, u) 
  3.  (u + v, w)  =  (u, w) + (v, w) 
  4.  (cu, v)  =  (u, cv)  =  c(u, v) 



Example 

   Let V be the vector space consisting of all continuous functions with the 
standard + and *.  Then define an inner product by 

          

   For example:          

   The four properties follow immediately from the analogous property of the 
definite integral: 

         



Inner Product Properties 

    (v, 0)  =   0 

     

   If (v, u)  =   0, v,u  are called orthogonal 
   Schwarz Inequality:  

   [(v, u)]2 ≤  (v, v) (u, u) 

   The classical scalar product is the component-wise product 
   (x1 , x2, … ,xn) (y1 , y2, … ,yn) = (x1 y1 , x2 y2, … ,xn yn) 

),(|||| vvv =

||||||||
),(),cos(
vu
vuvu
⋅

=



Similarity Metrics 

   The simplest distance for continuous m-dimensional 
instance space is Euclidian distance. 

   The simplest distance for m-dimensional binary instance 
space is Hamming distance (number of feature values that 
differ). 

   For text, cosine similarity is typically most effective. 



END 



Training (version 2) 

   V is built using all training documents D 

   For each category ci  ∈ C 

      Let Di the document subset of D in ci  

      ⇒ P(ci) = |Di| / |D| 

   ni is the total number of pairs <w,d>, w ∈ d ∈ Di and w ∈ V. 

   For each wj ∈ V, 

 nij is the number of documents of ci containing wj that is the 
number of pairs <wj,d> such that d ∈ Di 

      ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)   


