
Master in Human Language
Technology and Interfaces

Machine Learning

 Alessandro Moschitti
Department of information and communication technology

University of Trento
Email: moschitti@dit.unitn.it

Course Schedule

   prof Moschitti

   Today, 14:00-16:00

 Friday, Tomorrow: 14:00-16:00, Room 201

   Since November 12

   Thursday and Friday: 14:00-16:00, Room 106

Course Schedule (2)

   prof Farid

   A cycle of seminar lectures

   Not completely sequential

   Offer you to have a possibility to learn different topics

   Monday, 13:30 - 15:30, classroom 104
 Tuesday – sometime depending on the needs
and on the availability of HL course

 (classroom 108, 13:30-14:30)

Content of Moschitti’s lectures

   PAC Learning

   VC dimension

   Perceptron

   Vector Space Model

   Representer Theorem

   Support Vector Machines (SVMs)

   Hard/Soft Margin (Classification)

   Regression and ranking

   Kernels Methods

   Theory and Algebraic properties

   Linear, Polynomial, Gaussian

   Kernel construction,

   kernels for structured data (introduction)

   Sequence, Tree Kernels

Moschitti’s Lab

Minimal schedule

   Automated Text Categorization

   Question Classification (Question Answering)

Optional Topics

   Semantic Role Labeling

   Relation Extraction

   Named Entity Recognition

   Textual Entailment Recognition

Reference Book + some articles

Today

   Introduction to Machine Learning

   Decision Trees

   Introduction to Probability

   Anything is a function

   From the planet motion

   To the input/output actions of your computer

   Therefore, any problem would be automatically
solved

Why Learning Functions Automatically?

During your previous studies you have
already tackled the learning problem

Linear Regression

Degree 2

Degree

Automatic Learning

   Real Values: regression

   Finite and integer: classification

   Suppose to design the classification function for cat
and dog categories:

   2 classes

   f(x)  {cats,dogs}

   Given a set of examples of the two categories:

   Features are extracted (height, mustaches, tooth

type, number of legs).

   Apply a learning algorithm

Basic Learning Concepts

   Positive and Negative examples

   Feature representation

   Learning Algorithm

   Training and test set

   Accuracy measurement

   Can we learn any function?

   Statistical Learning Theory

   PAC learning

Several Kinds of Learning Algorithms

   Logic boolean expressions, (e.g. Decision Trees).

   Probabilistic Functions, (Bayesian Classifier).

   Separating Functions working in vector spaces

   Non linear: KNN, neural network multiple-layers,…

   Linear: SVMs, neural network with one neuron,…

   These approaches are largely applied In
language technology

   Very Simple Example: Text Categorization

Decision Trees

Decision Tree (between Dogs/Cats)

Taller than 50 cm?

Short hair?

No yes

No

Mustaches?

No

Output: Dog Output: Cat

Si

Output: dog

. . .

Entropy-based feature selection

   Entropy of class distribution P(Ci):

   Measure “how much the distribution is uniform”

   Given S1…Sn sets partitioned wrt a feature the

overall entropy is:

Example: cats and dogs classification

   p(dog)=p(cat) = 4/8 = ½ (for both dogs and cats)

   H(S0) = ½*log(2) * 2 = 1

S0

Has the animal more than 6 siblings?

S0
S1

S2

   p(dog)=p(cat) = 2/4 = ½ (for both dogs and cats)

   H(S1) = H(S2) = ¼ * [½*log(2) * 2] = 0.25

   All(S1, S2) = 2*.25 = 0.5

Does the animal have short hair?

S0
S1

S2

   p(dog)= 1/4; p(cat) = 3/4

   H(S2)=H(S1) = ¼ * [(1/4)*log(4) + (3/4)*log(4/3)] =
¼ * [½ + 0.31] = ¼ * 0.81 = 0.20

   All(S1,S2) = 0.20*2 = 0.40 (note that |S1| = |S2|)

Follow up

   hair length feature is better than number of
siblings since 0.40 is lower than 0.50

   Test all the features

   Choose the best

   Start with a new feature on the collection sets
induced by the best feature

Probabilistic Classifier

Probability (1)

   Let Ω be a space and β a collection of subsets of Ω

   β is a collection of events

   A probability function P is defined as:

Definition of Probability

   P is a function which associates each event E with a
number P(E) called probability of E as follows:

€

= P(Ei) if Ei ∧ E j = 0
i=1

∞

∑ , ∀i ≠ j

Finite Partition and Uniformly Distributed

   Given a partition of n events uniformly distributed
(with a probability of 1/n); and

   given an event E, we can evaluate its probability as:

€

P(E) = P(E ∧ Etot) = P(E ∧ (E1∨ E2 ∨ ...∨ En)) =

P(E ∧ Ei) = P(Ei)
Ei ⊂E
∑i∑ =

1
nEi ⊂E

∑ =

1
n

1=
1
nEi ⊂E

∑ (i : Ei ⊂ E{ }) =
Target Cases

All Cases

Conditioned Probability

A B

€

A∧B

   P(A | B) is the probability of A given B

   B is the piece of information that we know

   The following rule holds:

Indipendence

   A and B are indipedent iff:

   If A and B are indipendent:

Bayes’s Theorem

Proof:

€

P(A |B) =
P(A∧B)
P(B)

€

P(B | A) =
P(A∧B)
P(A)

€

P(A |B) =
[P(B | A)P(A)]

P(B)

(Def. of. Cond. prob)

Def. of. Cond. prob

€

P(A |B) =
P(B | A)P(A)

P(B)

Bayesian Classifier

   Given a set of categories {c1, c2,…cn}

   Let E be a description of a classifying example.

   The category of E can be derived by using the following
probability:

€

P(ci | E) =
P(ci)P(E | ci)

P(E)

€

P(ci
i=1

n

∑ | E) =
P(ci)P(E | ci)

P(E)
=1

i=1

n

∑

€

P(E) = P(ci)P(E | ci)
i=1

n

∑

Bayesian Classifier (cont)

   We need to compute:

   the posterior probability: P(ci)

   the conditional probability: P(E | ci)

   P(ci) can be estimated from the training set, D.

   given ni examples in D of type ci, then P(ci) = ni / |D|

   Suppose that an example is represented by m features:

   The elements will be exponential in m so there are not
enough training examples to estimate P(E |ci)

Naïve Bayes Classifiers

   The features are assumed to be indipendent
given a category (ci).

   This allows us to only estimate P(ej | ci) for each
feature and category.

€

P(E | ci) = P(e1∧e2 ∧∧em | ci) = P(e j | ci
j=1

m

∏)

An example of the
Naïve Bayes Clasiffier

   C = {Allergy, Cold, Healthy}

   e1 = sneeze; e2 = cough; e3 = fever

   E = {sneeze, cough, ¬fever}
Prob Healthy Cold Allergy
P(ci) 0.9 0.05 0.05

P(sneeze|ci) 0.1 0.9 0.9
P(cough|ci) 0.1 0.8 0.7
P(fever|ci) 0.01 0.7 0.4

An example of the
Naïve Bayes Clasiffier (cont.)

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy
P(E) = 0.0089 + 0.01 + 0.019 = 0.0379

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50

Probability Healthy Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze | ci) 0.1 0.9 0.9

P(cough | ci) 0.1 0.8 0.7

P(fever | ci) 0.01 0.7 0.4

E={sneeze, cough, ¬fever}

Probability Estimation

   Estimate counts from training data.

   Let ni be the number of examples in ci

   let nij be the number of examples of ci containing the

feature ej, then:

   Problems: the data set may still be too small.

   For rare features we may have, ek, ∀ci :P(ek | ci) = 0.

Smoothing

   The probabilities are estimated even if they are not
in the data

   Laplace smoothing

   each feature has a priori probability, p,

   We assume that such feature has been observed in an

example of size m.

Naïve Bayes for text classification

   “bag of words” model

   The examples are category documents

   Features: Vocabulary V = {w1, w2,…wm}

   P(wj | ci) is the probability to have wj in a category i

   Let us use the Laplace’s smoothing

   Uniform distribution (p = 1/|V|) and m = |V|

   That is each word is assumed to appear exactly one time in a

category

Training (version 1)

   V is built using all training documents D

   For each category ci ∈ C

 Let Di the document subset of D in ci

 ⇒ P(ci) = |Di| / |D|

 ni is the total number of words in Di

 for each wj ∈ V, nij is the counts of wj in ci

 ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)

Testing

   Given a test document X

   Let n be the number of words of X

   The assigned category is:

 where aj is a word at the j-th position in X

€

argmax
ci ∈C

P(ci) P(a j | ci
j=1

n

∏)

Vector Spaces

Definition (1)

   A set V is a vector space over a field F (for example, the field of real
or of complex numbers) if, given

   an operation vector addition defined in V, denoted v + w (where v, w
∈ V), and

   an operation scalar multiplication in V, denoted a * v (where v ∈ V
and a ∈ F),

   the following properties hold for all a, b ∈ F and u, v, and w ∈ V:

   v + w belongs to V.

(Closure of V under vector addition.)

   u + (v + w) = (u + v) + w.

(Associativity of vector addition in V.)

   There exists a neutral element 0 in V, such that for all elements v in V,

v + 0 = v.
(Existence of an additive identity element in V.)

Definition (2)

   For all v in V, there exists an element w in V, such that v + w = 0.
(Existence of additive inverses in V.)

   v + w = w + v.
(Commutativity of vector addition in V.)

   a * v belongs to V.
(Closure of V under scalar multiplication.)

   a * (b * v) = (ab) * v.
(Associativity of scalar multiplication in V.)

   If 1 denotes the multiplicative identity of the field F, then 1 * v = v.
(Neutrality of one.)

   a * (v + w) = a * v + a * w.
(Distributivity with respect to vector addition.)

   (a + b) * v = a * v + b * v.
(Distributivity with respect to field addition.)

An example of Vector Space

   For all n Rn forms a vector space over R, with component-wise
operations.

   Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi, for
i={1,2,3,...n} is a member of R={real numbers}. Let the field be
R, as well.
Define Vector Addition:
For all v, w, in V, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn].
Define Scalar Multiplication:
For all a in F and v in V, a*v=[a*v1,a*v2,a*v3,...,a*vn]. Then V is
a Vector Space over R.

Linear dependency

   Linear combination:

   α1 v1 + …+ αn vn = 0 for some α1…αn not all zero
 ⇒ y = α1 v1 + …+ αn vn has a unique expression.

   In case αi > 0 and the sum is 1 it is called convex

combination

Normed Vector Spaces

   If V is a vector space over a field K, a norm on V is a function
from V to R,

   it associates each vector v in V with a real number, ||v||.

   The norm must satisfy the following conditions:

   For all a in K and all u and v in V,
 1. ||v|| ≥ 0 with equality if and only if v = 0.

 2. ||av|| = |a| ||v||.
 3. ||u + v|| ≤ ||u|| + ||v||.

   A useful consequence of the norm axioms is the inequality

   ||u ± v|| ≥ | ||u|| - ||v|| |

   for all vectors u and v.

Inner Product Spaces

   Let V be a vector space and u, v, and w be vectors in V and c
be a constant.

   Then, an inner product (,) on V is a function with domain
consisting of pairs of vectors and range real numbers satisfying
the following properties.
 1. (u, u) > 0 with equality if and only if u = 0.
 2. (u, v) = (v, u)
 3. (u + v, w) = (u, w) + (v, w)
 4. (cu, v) = (u, cv) = c(u, v)

Example

   Let V be the vector space consisting of all continuous functions with the
standard + and *. Then define an inner product by

   For example:

   The four properties follow immediately from the analogous property of the
definite integral:

Inner Product Properties

   (v, 0) = 0

  

   If (v, u) = 0, v,u are called orthogonal

   Schwarz Inequality:

   [(v, u)]2 ≤ (v, v) (u, u)

   The classical scalar product is the component-wise product

   (x1 , x2, … ,xn) (y1 , y2, … ,yn) = (x1 y1 , x2 y2, … ,xn yn)

),(|||| vvv =

||||||||
),(),cos(
vu
vuvu
⋅

=

Similarity Metrics

   The simplest distance for continuous m-dimensional
instance space is Euclidian distance.

   The simplest distance for m-dimensional binary instance
space is Hamming distance (number of feature values that
differ).

   For text, cosine similarity is typically most effective.

END

Training (version 2)

   V is built using all training documents D

   For each category ci ∈ C

 Let Di the document subset of D in ci

 ⇒ P(ci) = |Di| / |D|

 ni is the total number of pairs <w,d>, w ∈ d ∈ Di and w ∈ V.

   For each wj ∈ V,

 nij is the number of documents of ci containing wj that is the
number of pairs <wj,d> such that d ∈ Di

 ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)

