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Course Schedule

prof Moschitti

Today, 14:00-16:00

Friday, Tomorrow: 14:00-16:00, Room 201
Since November 12

Thursday and Friday: 14:00-16:00, Room 106




Course Schedule (2)

= prof Farid

= A cycle of seminar lectures

¢ Not completely sequential
e Offer you to have a possibility to learn different topics

= Monday, 13:30 - 15:30, classroom 104

Tuesday — sometime depending on the needs
and on the availability of HL course

(classroom 108, 13:30-14:30)




Content of Moschitti’s lectures

= PAC Learning

¢ VC dimension

= Perceptron
¢ Vector Space Model
¢ Representer Theorem

= Support Vector Machines (SVMs)
¢ Hard/Soft Margin (Classification)
¥ Regression and ranking
= Kernels Methods
r Theory and Algebraic properties
¥ Linear, Polynomial, Gaussian
» Kernel construction,
= kernels for structured data (introduction)
e Sequence, Tree Kernels




Moschitti’s Lab

Minimal schedule
= Automated Text Categorization
= Question Classification (Question Answering)

Optional Topics

= Semantic Role Labeling

= Relation Extraction

= Named Entity Recognition

= [extual Entailment Recognition




Reference Book + some articles

Roberto Basili
Alessandro Moschitti

Automatic Text Categorization

INIYISOIA / 1jiseg

From Information Retrieval
to Support Vector Learning

>
=1
-+
o
=|
o0
=
(2]
—
&
-
0
o
—+
D
[{=]
S
N
o0
=
o
=1




Today

= Introduction to Machine Learning
= Decision Trees

= Introduction to Probability




Why Learning Functions Automatically?

= Anything is a function
¢ From the planet motion
¢ To the input/output actions of your computer
= Therefore, any problem would be automatically

solved




During your previous studies you have
already tackled the learning problem




Linear Regression
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Automatic Learning

Real Values: regression
Finite and integer: classification

Suppose to design the classification function for cat
and dog categories:

e 2 classes

e f(x) 2> {cats,dogs}

Given a set of examples of the two categories:

e Features are extracted (height, mustaches, tooth
type, number of legs).

¢ Apply a learning algorithm




Basic Learning Concepts

= Positive and Negative examples
= Feature representation

= Learning Algorithm

= [raining and test set

= Accuracy measurement

= Can we learn any function?

= Statistical Learning Theory
¢ PAC learning




Several Kinds of Learning Algorithms

= Logic boolean expressions, (e.g. Decision Trees).
= Probabilistic Functions, (Bayesian Classifier).

= Separating Functions working in vector spaces
¢ Non linear: KNN, neural network multiple-layers,...
¢ Linear: SVMs, neural network with one neuron,...

s [hese approaches are largely applied In
language technology

= Very Simple Example: Text Categorization




Decision Trees




Decision Tree (between Dogs/Cats)

Taller than 50 cm?

No / \yes

Short hair?

-

Mustaches?

No / \Si




Entropy-based feature selection

= Entropy of class distribution P(C)):

I

H(P) =)  —P(Ci)loga(P(Cy))
i=1

s Measure “how much the distribution is uniform”

= Given S,...S, sets partitioned wrt a feature the
overall entropy is:

= ~ o m H psz .
H(p_ 1 o p'--n. ) — Z ( : )




Example: cats and dogs classification

= p(dog)=p(cat) = 4/8 = V2 (for both dogs and cats)
= H(S0) =%"log(2) *2=1




Has the animal more than 6 siblings?

= p(dog)=p(cat) = 2/4 = V> (for both dogs and cats)
s H(S1) =H(S2) =% " [2*log(2) * 2] = 0.25
s All(S1, S2) =2*.25=0.5




Does the animal have short hair?

S,
—(y

\ SZ
= p(dog)= 1/4; p(cat) = 3/4 ’

= H(S2)=H(S1) = V4 * [(1/4)*log(4) + (3/4)*log(4/3)] =
Ya* [V +0.31] =% *0.81 = 0.20

s All(S1,52) = 0.20*2 = 0.40 (note that |S1]| = |S2|)




Follow up

= hair length feature is better than number of
siblings since 0.40 is lower than 0.50

s [est all the features
s Choose the best

s Start with a new feature on the collection sets
induced by the best feature




Probabilistic Classifier




Probability (1)

= Let Q be a space and 3 a collection of subsets of Q2

s B is a collection of events

= A probability function P is defined as:

P:g—|01]




Definition of Probability

s Pis a function which associates each event E with a
number P(E) called probability of E as follows:

1)0=P(E) =<1
2) P(Q) =1
3) P(E, VE,Vv..VE, V.=
=Y P(E)ifE,AE,; =0, Vi=
o




Finite Partition and Uniformly Distributed

= Given a partition of n events uniformly distributed
(with a probability of 1/n); and

= given an event E, we can evaluate its probability as:

P(E)=P(EANE _)=P(EAN(E,VE,v..VE )) =

Y P(EAE)= Y P(E)= ) %=

E,CE E,CE

I L. )
;El=;(‘{z.EiCE}‘)—

E,CE

Target Cases
All Cases




Conditioned Probability

= P(A| B) is the probability of A given B
= B is the piece of information that we know
= The following rule holds:

pam =228 (3 ()




Indipendence

= A and B are indipedent /ff:
P(A|B)=P(A)
P(B|A)=P(B)

= If A and B are indipendent:
P(A A B)

P(A) = P(A| B) = 2B

P(A A B) = P(A)P(B)




Bayes’s Theorem

P(B|A)P(A)

P(AIB) = B

Proof:

P(AAB)
P(B)

P(AAB)
P(A)

P(AIB) =

P(BlA)=

peAlB) < LPBIAPA)

P(B)




Bayesian Classifier

= Given a set of categories {c, C,,...C.}
= Let E be a description of a classifying example.

= The category of E can be derived by using the following
probabillity:

P(c,|E) = P(Ci;)}zgi lc,)
i Pl )= E P(Ci;fz;?E) =

P(E) = P(c)P(E Ic)




Bayesian Classifier (cont)

= We need to compute:
e the posterior probability: P(c,)
¢ the conditional probability: P(E | c,)

= P(c;) can be estimated from the training set, D.
e given n. examples in D of type ¢, then P(c)) = n./ |D|
= Suppose that an example is represented by m features:
E=e ne, A---Ne,
= [he elements will be exponential in m so there are not
enough training examples to estimate P(E |c;)




Naive Bayes Classifiers

= [he features are assumed to be indipendent
given a category (c;).

P(Elc,)=Pe,ne,A---Ne, |Ci)=np(€j lc;)
j=1

= This allows us to only estimate P(¢;| c;) for each
feature and category.




An example of the
Nalve Bayes Clasiffier

= C ={Allergy, Cold, Healthy}
= €, = sneeze; e, = cough; e; = fever

= E ={sneeze, cough, —~fever}

Prob Healthy Cold Allergy
P(c) 0.9 0.05 0.05
P(sneeze|c)) 0.1 0.9 0.9
P(cough|c;) 0.1 0.8 0.7
P(fever|c;) 0.01 0.7 04




An example of the
Nalve Bayes Clasiffier (cont.)

Probability Healthy Cold Allergy

P(c) 0.9 0.05 0.05

P(sneeze | c)) 0.1 0.9 0.9 E={sneeze, Cough, —-fever}
P(cough | ¢) 0.1 0.8 0.7

P(fever | c) 0.01 0.7 0.4

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy

P(E) =0.0089 + 0.01 + 0.019 = 0.0379

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50




Probability Estimation

= Estimate counts from training data.

= Let n. be the number of examples in c;

= let n,; be the number of examples of ¢, containing the
feature e, then:

&
P(ej | Ci) =
n.

1

= Problems: the data set may still be too small.
= Forrare features we may have, e,, Vc, :P(e, | ¢;) = 0.




Smoothing

= The probabilities are estimated even if they are not
In the data

= Laplace smoothing

¢ each feature has a priori probability, p,

¢ We assume that such feature has been observed in an
example of size m.

n..+mp
P(ej |Ci)= ?
n, +m




Naive Bayes for text classification

= "bag of words” model
¥ The examples are category documents
¢ Features: Vocabulary V = {w,, w,,...w,}
v P(w;| c) is the probability to have w; in a category i

= Let us use the Laplace’s smoothing
e Uniform distribution (p = 1/|V|) and m = |V

¢ Thatis each word is assumed to appear exactly one time in a
category




Training (version 1)

= Vs built using all training documents D
= For each category c, € C
Let D, the document subset of D in c;
= P(c,) = |Dj] / |D|
n. is the total number of words in D,
for each w; € V, n, is the counts of w;in c;
= P(w;|c)=(n;+1)/(n;+|V])




Testing

s Given a test document X
= Let n be the number of words of X
= [he assigned category Is:

argmaXP(cl.)l_[P(aj lc,)

c; eC =1

where a; is a word at the j-th position in X




Vector Spaces




Definition (1)

= A setVis avector space over a field F (for example, the field of real
or of complex numbers) if, given

= an operation vector addition defined in V, denoted v + w (where v, w
e V), and

= an operation scalar multiplication in V, denoted a * v (where v e V
and a e F),

= the following properties hold for all a, be F and u, v, and w € V:

= V+wbelongstoV.
(Closure of V under vector addition.)

= Ut (Vv+w)=(u+v)+w.
(Associativity of vector addition in V.)

s [ here exists a neutral element 0 in V, such that for all elements vin V,
v+0=v.
(Existence of an additive identity element in V.)




Definition (2)

= ForallvinV, there exists an element win V, such thatv + w = 0.
(Existence of additive inverses in V.)
= VIW=W+vV.
(Commutativity of vector addition in V.)
= a”vbelongstoV.
(Closure of V under scalar multiplication.)
= a*(b*v)=(ab)*v.
(Associativity of scalar multiplication in V.)
= If 1 denotes the multiplicative identity of the field F, then 1 * v = v.
(Neutrality of one.)
m a*(v+tw)=a*v+a*w.
(Distributivity with respect to vector addition.)
m (@+b)*v=a*v+b*v.
(Distributivity with respect to field addition.)




An example of Vector Space

= For all n R" forms a vector space over R, with component-wise
operations.

= LetV be the set of all n-tuples, [v1,v2,v3,...,vn] where vi, for
i={1,2,3,...n} is a member of R={real numbers}. Let the field be
R, as well.
Define Vector Addition:
For all v, w, in V, define v+tw=[v1+w1,v2+w2 v3+w3,...,vn+wn].
Define Scalar Multiplication:
Forallain FandvinV, a*v=[a*v1,a*v2,a*v3,...,a*vn]. Then V is
a Vector Space over R.




Linear dependency

= Linear combination:
= oyVy+..+a,v,=0 for some a,...a,not all zero
=Yy =04V, *+ ...+ 0,V,has a unique expression.

= Incase o,>0 and the sum is 1 it is called convex
combination




Normed Vector Spaces

If Vis a vector space over a field K, a norm on Vis a function
from Vto R,

it associates each vector v in V with a real number, ||v]|.

The norm must satisfy the following conditions:
¢ Forallain Kandalluandvin V,
1. ||v]] 2 O with equality if and only if v = 0.
2. ||lav]| = |al [Iv]].
3. [Ju+ || = [[u]] + [|v]].
A useful consequence of the norm axioms is the inequality
v |luzv|| =] |lu]]-[[v]]]
for all vectors u and v.




Inner Product Spaces

= LetV be a vector space and u, v, and w be vectorsin V and c
be a constant.

= Then, aninner product ( , ) on V is a function with domain
consisting of pairs of vectors and range real numbers satisfying

the following properties.
1. (u, u) > 0 with equality if and only ifu = 0.
u,v) = (v, u)

V,W) = (u,w)+ (v, w)
(u, cv) = c(u, v)

0
£
<

I




Example

Let V be the vector space consisting of all continuous functions with the

standard + and *. Then define an inner product by
1

(f.8)= ! fHeg)dt |

For example: (x,x*) = !(x)(a:z)cb: =

SN

The four properties follow immediately from the analogous property of the

definite integral:
1

(f+&.m)= g(f+ g)O)A(E) dt

1 1 1

- aﬁ FORE) +g@ORE)) dt = D[ SO dt+ D[g(-:)h(f) dt

=(/,A)+(8,71)




Inner Product Properties

= (v,0) = 0

" [[vi=y (V)

« If(v,u) = 0, v,u are called orthogonal

= Schwarz Inequality:

e [(v, u)?= (v, V) (u,u)
= The classical scalar product is the component-wise product
n (XX X)) (V70 Yo V) = (XY X0 Y0 X, V)

(,v)

lull-v]

= cos(u,v)=




Similarity Metrics

= The simplest distance for continuous m-dimensional
iInstance space is Euclidian distance.

= The simplest distance for m-dimensional binary instance

space is Hamming distance (number of feature values that
differ).

= Fortext, cosine similarity is typically most effective.




END




Training (version 2)

= Vs built using all training documents D
= For each category c, € C

Let D, the document subset of D in c;

= P(c,) = |Dj] / |D|

n. is the total number of pairs <w,d> we d& D, and w € V.
s For each w; € V,

n, is the number of documents of ¢, containing w; that is the
number of pairs <w;,d> such that d € D,

= P(w; | c)=(n; +1)/(n+[V])




