Master in Human Language Technology and Interfaces

Machine Learning

Alessandro Moschitti

Department of information and communication technology University of Trento Email: moschitti@dit.unitn.it

Course Schedule

- prof Moschitti
- Today, 14:00-16:00
 - Friday, Tomorrow: 14:00-16:00, Room 201
- Since November 12
- Thursday and Friday: 14:00-16:00, Room 106

Course Schedule (2)

prof Farid

- A cycle of seminar lectures
 - Not completely sequential
 - Offer you to have a possibility to learn different topics
- Monday, 13:30 15:30, classroom 104

Tuesday – sometime depending on the needs and on the availability of HL course (classroom 108, 13:30-14:30)

Content of Moschitti's lectures

- PAC Learning
 - VC dimension
- Perceptron
 - Vector Space Model
 - Representer Theorem
- Support Vector Machines (SVMs)
 - Hard/Soft Margin (Classification)
 - Regression and ranking
- Kernels Methods
 - Theory and Algebraic properties
 - Linear, Polynomial, Gaussian
 - Kernel construction,
- kernels for structured data (introduction)
 - Sequence, Tree Kernels

Moschitti's Lab

Minimal schedule

- Automated Text Categorization
- Question Classification (Question Answering)

Optional Topics

- Semantic Role Labeling
- Relation Extraction
- Named Entity Recognition
- Textual Entailment Recognition

Reference Book + some articles

Today

- Introduction to Machine Learning
- Decision Trees
- Introduction to Probability

Why Learning Functions Automatically?

- Anything is a function
 - From the planet motion
 - To the input/output actions of your computer
- Therefore, any problem would be automatically solved

During your previous studies you have already tackled the learning problem

Linear Regression

Degree 2

Degree

Automatic Learning

- Real Values: *regression*
- Finite and integer: classification
- Suppose to design the classification function for cat and dog categories:
 - 2 classes
 - $f(x) \rightarrow \{cats, dogs\}$
- Given a set of examples of the two categories:
 - Features are extracted (height, mustaches, tooth type, number of legs).
 - Apply a learning algorithm

Basic Learning Concepts

- Positive and Negative examples
- Feature representation
- Learning Algorithm
- Training and test set
- Accuracy measurement
- Can we learn any function?
- Statistical Learning Theory
 - PAC learning

Several Kinds of Learning Algorithms

- Logic boolean expressions, (e.g. Decision Trees).
- Probabilistic Functions, (Bayesian Classifier).
- Separating Functions working in vector spaces
 Non linear: KNN, neural network multiple-layers,...
 Linear: SVMs, neural network with one neuron,...
- These approaches are largely applied In language technology
- Very Simple Example: Text Categorization

Decision Trees

Decision Tree (between Dogs/Cats)

Entropy-based feature selection

• Entropy of class distribution $P(C_i)$:

$$H(P) = \sum_{i=1}^{m} -P(C_i) log_2(P(C_i))$$

- Measure "how much the distribution is uniform"
- Given S₁...S_n sets partitioned wrt a feature the overall entropy is:

$$\bar{H}(P^{S_1}, ..., P^{S_n}) = \sum_{i=1}^m \frac{H(P^{S_i})}{|S_i|}$$

Example: cats and dogs classification

• $p(dog)=p(cat) = 4/8 = \frac{1}{2}$ (for both dogs and cats)

•
$$H(S_0) = \frac{1}{2} \log(2) * 2 = 1$$

Has the animal more than 6 siblings?

• $p(dog)=p(cat) = 2/4 = \frac{1}{2}$ (for both dogs and cats)

•
$$H(S_1) = H(S_2) = \frac{1}{4} * [\frac{1}{2} \log(2) * 2] = 0.25$$

Does the animal have short hair?

- $H(S_2)=H(S_1) = \frac{1}{4} * [(\frac{1}{4})*\log(4) + (\frac{3}{4})*\log(\frac{4}{3})] = \frac{1}{4} * [\frac{1}{2} + 0.31] = \frac{1}{4} * 0.81 = 0.20$
- All(S1,S2) = 0.20*2 = 0.40 (note that |S1| = |S2|)

Follow up

- hair length feature is better than number of siblings since 0.40 is lower than 0.50
- Test all the features
- Choose the best
- Start with a new feature on the collection sets induced by the best feature

Probabilistic Classifier

Probability (1)

- Let Ω be a space and β a collection of subsets of Ω
- β is a collection of events
- A probability function *P* is defined as:

$$P:\beta \rightarrow [0,1]$$

P is a function which associates each event E with a number P(E) called probability of E as follows:

1)
$$0 \le P(E) \le 1$$

2) $P(\Omega) = 1$
3) $P(E_1 \lor E_2 \lor \dots \lor E_n \lor \dots) =$
 $= \sum_{i=1}^{\infty} P(E_i) \text{ if } E_i \land E_j = 0, \forall i \neq j$

Finite Partition and Uniformly Distributed

- Given a partition of *n* events uniformly distributed (with a probability of 1/*n*); and
- given an event E, we can evaluate its probability as:

$$P(E) = P(E \land E_{tot}) = P(E \land (E_1 \lor E_2 \lor \dots \lor E_n)) =$$

$$\sum_{i} P(E \land E_i) = \sum_{E_i \subseteq E} P(E_i) = \sum_{E_i \subseteq E} \frac{1}{n} =$$

$$\frac{1}{n} \sum_{E_i \subseteq E} 1 = \frac{1}{n} (|\{i : E_i \subseteq E\}|) = \frac{\text{Target Cases}}{\text{All Cases}}$$

Conditioned Probability

- P(A | B) is the probability of A given B
- B is the piece of information that we know
- The following rule holds:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$

Indipendence

• A and B are indipedent *iff*: $P(A \mid B) = P(A)$ $P(B \mid A) = P(B)$

• If A and B are indipendent:

$$P(A) = P(A | B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A)P(B)$$

Bayes's Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Proof:

$$P(A | B) = \frac{P(A \land B)}{P(B)}$$
 (Def. of. Cond. prob)

$$P(B | A) = \frac{P(A \land B)}{P(A)}$$
 Def. of. Cond. prob

$$P(A | B) = \frac{[P(B | A)P(A)]}{P(B)}$$

Bayesian Classifier

- Given a set of categories $\{c_1, c_2, \dots c_n\}$
- Let E be a description of a classifying example.
- The category of *E* can be derived by using the following probability:

$$P(c_i | E) = \frac{P(c_i)P(E | c_i)}{P(E)}$$

$$\sum_{i=1}^{n} P(c_i | E) = \sum_{i=1}^{n} \frac{P(c_i)P(E | c_i)}{P(E)} = \sum_{i=1}^{n} P(c_i)P(E | c_i)$$

Bayesian Classifier (cont)

• We need to compute:

- the posterior probability: $P(c_i)$
- the conditional probability: $P(E | c_i)$
- $P(c_i)$ can be estimated from the training set, D.
 - given n_i examples in D of type c_i , then $P(c_i) = n_i / |D|$
- Suppose that an example is represented by *m* features:

$$E = e_1 \wedge e_2 \wedge \cdots \wedge e_m$$

The elements will be exponential in *m* so there are not enough training examples to estimate P(E | c_i)

Naïve Bayes Classifiers

The *features* are assumed to be indipendent given a category (c_i).

$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{j=1}^m P(e_j \mid c_i)$$

This allows us to only estimate P(e_j | c_i) for each feature and category.

An example of the Naïve Bayes Clasiffier

- C = {Allergy, Cold, Healthy}
- e_1 = sneeze; e_2 = cough; e_3 = fever
- E = {sneeze, cough, ¬fever}

Prob	Healthy	Cold	Allergy
P(<i>c_i</i>)	0.9	0.05	0.05
P(sneeze c _i)	0.1	0.9	0.9
P(cough <i>c_i</i>)	0.1	0.8	0.7
P(fever c _i)	0.01	0.7	0.4

An example of the Naïve Bayes Clasiffier (cont.)

Probability	Healthy	Cold	Allergy
P(<i>c</i> _{<i>i</i>})	0.9	0.05	0.05
P(sneeze <i>c_i</i>)	0.1	0.9	0.9
P(cough c _i)	0.1	0.8	0.7
P(fever c _i)	0.01	0.7	0.4

 $E = \{sneeze, cough, \neg fever\}$

P(Healthy|E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

The most probable category is allergy

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50

Probability Estimation

- Estimate counts from training data.
- Let n_i be the number of examples in c_i
- let n_{ij} be the number of examples of c_i containing the feature e_j, then:

$$P(e_j \mid c_i) = \frac{n_{ij}}{n_i}$$

- Problems: the data set may still be too small.
- For rare features we may have, e_k , $\forall c_i : P(e_k | c_i) = 0$.

Smoothing

- The probabilities are estimated even if they are not in the data
- Laplace smoothing
 - each feature has a priori probability, p,
 - We assume that such feature has been observed in an example of size *m*.

$$P(e_j \mid c_i) = \frac{n_{ij} + mp}{n_i + m}$$

Naïve Bayes for text classification

- "bag of words" model
 - The examples are category documents
 - Features: Vocabulary $V = \{w_1, w_2, \dots, w_m\}$
 - $P(w_j | c_i)$ is the probability to have w_j in a category *i*
- Let us use the Laplace's smoothing
 - Uniform distribution (p = 1/|V|) and m = |V|
 - That is each word is assumed to appear exactly one time in a category

Training (version 1)

- V is built using all training documents D
- For each category $c_i \in C$

Let D_i the document subset of D in c_i

$$\Rightarrow \mathsf{P}(c_i) = |D_i| / |D|$$

 n_i is the total number of words in D_i

for each $w_j \in V$, n_{ij} is the counts of w_j in c_i

$$\Rightarrow \mathsf{P}(w_j \mid c_i) = (n_{ij} + 1) / (n_i + |V|)$$

Testing

- Given a test document *X*
- Let n be the number of words of X
- The assigned category is:

$$\underset{c_i \in C}{\operatorname{argmax}} P(c_i) \prod_{j=1}^n P(a_j | c_i)$$

where a_j is a word at the *j*-th position in X

Vector Spaces

Definition (1)

- A set V is a vector space over a field F (for example, the field of real or of complex numbers) if, given
- an operation vector addition defined in V, denoted v + w (where v, w ∈ V), and
- an operation scalar multiplication in V, denoted a * v (where v ∈ V and a ∈ F),
- the following properties hold for all $a, b \in F$ and u, v, and $w \in V$:
- v + w belongs to V.
 (Closure of V under vector addition.)
- u + (v + w) = (u + v) + w.
 (Associativity of vector addition in V.)
- There exists a neutral element 0 in V, such that for all elements v in V,
 v + 0 = v.

(Existence of an additive identity element in V.)

Definition (2)

- For all v in V, there exists an element w in V, such that v + w = 0.
 (Existence of additive inverses in V.)
- $\bullet \mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}.$

(Commutativity of vector addition in V.)

- a * v belongs to V.
 (Closure of V under scalar multiplication.)
- a * (b * v) = (ab) * v.
 (Associativity of scalar multiplication in V.)
- If 1 denotes the multiplicative identity of the field F, then 1 * v = v. (Neutrality of one.)
- a * (v + w) = a * v + a * w.
 (Distributivity with respect to vector addition.)
- (a + b) * v = a * v + b * v.
 (Distributivity with respect to field addition.)

An example of Vector Space

- For all n Rⁿ forms a vector space over R, with component-wise operations.
- Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi, for i={1,2,3,...n} is a member of R={real numbers}. Let the field be R, as well.

Define Vector Addition:

For all v, w, in **V**, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn]. Define Scalar Multiplication:

For all a in **F** and v in **V**, $a^{*}v = [a^{*}v1, a^{*}v2, a^{*}v3, ..., a^{*}vn]$. Then **V** is a Vector Space over **R**.

Linear dependency

Linear combination:

• $\alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n = 0$ for some $\alpha_1 \ldots \alpha_n$ not all zero

 \Rightarrow y = α_1 v₁ + ...+ α_n v_n has a unique expression.

• In case $\alpha_i > 0$ and the sum is 1 it is called convex combination

Normed Vector Spaces

- If V is a vector space over a field K, a norm on V is a function from V to R,
- it associates each vector v in V with a real number, ||v||.
- The norm must satisfy the following conditions:
 - For all *a* in *K* and all **u** and **v** in *V*,
 - 1. $||\mathbf{v}|| \ge 0$ with equality if and only if $\mathbf{v} = \mathbf{0}$.
 - 2. ||a**v**|| = |a| ||**v**||.
 - 3. $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||.$
- A useful consequence of the norm axioms is the inequality
 - $||u \pm v|| \ge |||u|| ||v|||$
- for all vectors u and v.

Inner Product Spaces

- Let V be a vector space and u, v, and w be vectors in V and c be a constant.
- Then, an *inner product* (,) on V is a function with domain consisting of pairs of vectors and range real numbers satisfying the following properties.

1.
$$(\mathbf{u}, \mathbf{u}) \geq 0$$
 with equality if and only if $\mathbf{u} = \mathbf{0}$.

2.
$$(u, v) = (v, u)$$

3.
$$(u + v, w) = (u, w) + (v, w)$$

4.
$$(cu, v) = (u, cv) = c(u, v)$$

Example

- Let V be the vector space consisting of all continuous functions with the standard + and *. Then define an inner product by
 (f,g) = \$\int_0^1 f(t)g(t)dt\$

 For example: \$(x,x^2) = \$\int_0^1 (x)(x^2)dx = \frac{1}{4}\$
- The four properties follow immediately from the analogous property of the definite integral:

 $(f+g,h) = \int_{0}^{1} (f+g)(t)h(t) dt$

= (f,h) + (g,h)

$$= \int_{0}^{1} \left(f(t)h(t) + g(t)h(t) \right) dt = \int_{0}^{1} f(t)h(t) dt + \int_{0}^{1} g(t)h(t) dt$$

Inner Product Properties

• (v, 0) = 0

$$\bullet \parallel v \parallel = \sqrt{(v,v)}$$

- If (v, u) = 0, v, u are called orthogonal
- Schwarz Inequality:

 $[(\mathbf{v}, \mathbf{u})]^2 \leq (\mathbf{v}, \mathbf{v}) (\mathbf{u}, \mathbf{u})$

The classical scalar product is the component-wise product

$$(x_1, x_2, \dots, x_n) (y_1, y_2, \dots, y_n) = (x_1 y_1, x_2 y_2, \dots, x_n y_n)$$

•
$$\cos(u, v) = \frac{(u, v)}{\|u\| \cdot \|v\|}$$

Similarity Metrics

- The simplest distance for continuous *m*-dimensional instance space is *Euclidian distance*.
- The simplest distance for *m*-dimensional binary instance space is *Hamming distance* (number of feature values that differ).
- For text, cosine similarity is typically most effective.

END

Training (version 2)

- V is built using all training documents D
- For each category $c_i \in C$

Let D_i the document subset of D in c_i

 $\Rightarrow \mathsf{P}(c_i) = |D_i| / |D|$

 n_i is the total number of pairs $\langle w, d \rangle$, $w \in d \in D_i$ and $w \in V$.

For each
$$w_j \in V$$
,

 n_{ij} is the number of documents of c_i containing w_j that is the number of pairs $\langle w_j, d \rangle$ such that $d \in D_i$

$$\Rightarrow \mathsf{P}(w_j \mid c_i) = (n_{ij} + 1) / (n_i + |V|)$$

