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Course Schedule 


   prof Moschitti  

   Today, 14:00-16:00 

 Friday, Tomorrow: 14:00-16:00, Room 201 


   Since November 12 


   Thursday and Friday: 14:00-16:00, Room 106 



Course Schedule (2) 


   prof Farid 

   A cycle of seminar lectures 


   Not completely sequential 

   Offer you to have a possibility to learn different topics 


   Monday, 13:30 - 15:30, classroom 104 
 Tuesday – sometime depending on the needs 
and on the availability of HL course 

   (classroom 108, 13:30-14:30) 



Content of Moschitti’s lectures 


   PAC Learning 

   VC dimension 


   Perceptron 

   Vector Space Model 

   Representer Theorem 


   Support Vector Machines (SVMs) 

   Hard/Soft Margin (Classification) 

   Regression and ranking 


   Kernels Methods 

   Theory and Algebraic properties 

   Linear, Polynomial, Gaussian 

   Kernel construction, 


   kernels for structured data (introduction) 

   Sequence, Tree Kernels  



Moschitti’s Lab 

Minimal schedule 

   Automated Text Categorization 

   Question Classification (Question Answering) 

Optional Topics 

   Semantic Role Labeling 

   Relation Extraction 

   Named Entity Recognition 

   Textual Entailment Recognition 



Reference Book + some articles 



Today 


   Introduction to Machine Learning 


   Decision Trees 


   Introduction to Probability  




   Anything is a function 

   From the planet motion 

   To the input/output actions of your computer 


   Therefore, any problem would be automatically 
solved 

Why Learning Functions Automatically? 



During your previous studies you have 
already tackled the learning problem 



Linear Regression 



Degree 2 



Degree  



Automatic Learning 


   Real Values: regression 


   Finite and integer: classification 


   Suppose to design the classification function for cat 
and dog categories: 

   2 classes 

   f(x)  {cats,dogs} 


   Given a set of examples of the two categories: 

   Features are extracted (height, mustaches, tooth 

type, number of legs). 

   Apply a learning algorithm 



Basic Learning Concepts 


   Positive and Negative examples 


   Feature representation 


   Learning Algorithm 


   Training and test set 


   Accuracy measurement 


   Can we learn any function? 


   Statistical Learning Theory 

   PAC learning 



Several Kinds of Learning Algorithms 


   Logic boolean expressions, (e.g. Decision Trees). 

   Probabilistic Functions, (Bayesian Classifier). 

   Separating Functions working in vector spaces 


   Non linear: KNN, neural network multiple-layers,… 

   Linear: SVMs, neural network with one neuron,… 


   These approaches are largely applied In 
language technology 


   Very Simple Example: Text Categorization 



Decision Trees 



Decision Tree (between Dogs/Cats)  

Taller than 50 cm? 

Short hair?  

No  yes 

No  

Mustaches? 

No  

Output: Dog Output: Cat 

Si  

Output: dog 

. . . 



Entropy-based feature selection 


   Entropy of class distribution P(Ci): 


   Measure “how much the distribution is uniform” 

   Given S1…Sn sets partitioned wrt a feature the 

overall entropy is: 



Example: cats and dogs classification 


   p(dog)=p(cat) = 4/8 = ½ (for both dogs and cats) 


   H(S0) = ½*log(2) * 2 = 1 

S0 



Has the animal more than 6 siblings? 

S0 
S1 

S2 


   p(dog)=p(cat) = 2/4 = ½ (for both dogs and cats) 


   H(S1) = H(S2) = ¼ * [½*log(2) * 2] = 0.25 


   All(S1, S2) = 2*.25 = 0.5 



Does the animal have short hair? 

S0 
S1 

S2 


   p(dog)= 1/4; p(cat) = 3/4 


   H(S2)=H(S1) = ¼ * [(1/4)*log(4) + (3/4)*log(4/3)]  = 
¼ * [½ + 0.31]  = ¼ * 0.81 = 0.20 


   All(S1,S2) = 0.20*2 = 0.40 (note that |S1| = |S2|)  



Follow up 


   hair length feature is better than number of 
siblings since 0.40 is lower than 0.50 


   Test all the features 


   Choose the best 


   Start with a new feature on the collection sets 
induced by the best feature 



Probabilistic Classifier 



Probability (1) 


   Let Ω be a space and β a collection of subsets of Ω 


   β is a collection of events 


   A probability function P is defined as: 



Definition of Probability 


   P is a function which associates each event E with a 
number P(E) called probability of E as follows: 

€ 

= P(Ei) if Ei ∧ E j = 0
i=1

∞

∑ ,  ∀i ≠ j



Finite Partition and Uniformly Distributed 


   Given a partition of n events uniformly distributed 
(with a probability of 1/n); and 


   given an event E, we can evaluate its probability as: 

€ 

P(E) = P(E ∧ Etot ) = P(E ∧ (E1∨ E2 ∨ ...∨ En )) =

P(E ∧ Ei) = P(Ei)
Ei ⊂E
∑i∑ =

1
nEi ⊂E

∑ =

1
n

1=
1
nEi ⊂E

∑ ( i : Ei ⊂ E{ }) =
Target Cases

All Cases



Conditioned Probability 

A B 

€ 

A∧B


   P(A | B) is the probability of A given B 

   B is the piece of information that we know 

   The following rule holds: 



Indipendence 


   A and B are indipedent iff: 


   If A and B are indipendent: 



Bayes’s Theorem 

Proof: 

€ 

P(A |B) =
P(A∧B)
P(B)

€ 

P(B | A) =
P(A∧B)
P(A)

€ 

P(A |B) =
[P(B | A)P(A)]

P(B)

(Def. of. Cond. prob) 

Def. of. Cond. prob 

€ 

P(A |B) =
P(B | A)P(A)

P(B)



Bayesian Classifier 


   Given a set of categories {c1, c2,…cn} 


   Let E be a description of a classifying example. 


   The category of E can be derived by using the following 
probability: 

€ 

P(ci | E) =
P(ci)P(E | ci)

P(E)

€ 

P(ci
i=1

n

∑ | E) =
P(ci)P(E | ci)

P(E)
=1

i=1

n

∑

€ 

P(E) = P(ci)P(E | ci)
i=1

n

∑



Bayesian Classifier (cont) 


   We need to compute: 

   the posterior probability: P(ci)  

   the conditional probability: P(E | ci) 


   P(ci) can be estimated from the training set, D.  

   given ni examples in D of type ci, then P(ci) =  ni / |D| 


   Suppose that an example is represented by m features: 


   The elements will be exponential in m so there are not 
enough training examples to estimate P(E |ci) 



Naïve Bayes Classifiers 


   The features are assumed to be indipendent 
given a category (ci). 


   This allows us to only estimate P(ej | ci) for each 
feature and category. 

  

€ 

P(E | ci) = P(e1∧e2 ∧∧em | ci) = P(e j | ci
j=1

m

∏ )



An example of the 
Naïve Bayes Clasiffier 


   C = {Allergy, Cold, Healthy} 


   e1 = sneeze; e2 = cough; e3 = fever 


   E = {sneeze, cough, ¬fever} 
Prob Healthy Cold Allergy 
P(ci)      0.9       0.05       0.05 

P(sneeze|ci)      0.1       0.9       0.9 
P(cough|ci)      0.1       0.8       0.7 
P(fever|ci)      0.01       0.7       0.4 



An example of the 
Naïve Bayes Clasiffier (cont.) 

P(Healthy| E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E) 

P(Cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E) 

P(Allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E) 

The most probable category is allergy 
P(E) = 0.0089 + 0.01 + 0.019 = 0.0379 

P(Healthy| E) = 0.23, P(Cold | E) = 0.26, P(Allergy | E) = 0.50 

Probability Healthy Cold Allergy 

P(ci)      0.9       0.05       0.05 

P(sneeze | ci)      0.1       0.9       0.9 

P(cough | ci)      0.1       0.8       0.7 

P(fever | ci)      0.01       0.7       0.4 

E={sneeze, cough, ¬fever} 



Probability Estimation 


   Estimate counts from training data. 

   Let ni be the number of examples in ci 

   let nij be the number of examples of ci containing the 

feature ej, then: 


   Problems: the data set may still be too small. 

   For rare features we may have, ek, ∀ci :P(ek | ci) = 0. 



Smoothing 


   The probabilities are estimated even if they are not 
in the data 


   Laplace smoothing 

   each feature has a priori probability, p,  

   We assume that such feature has been observed in an 

example of size m. 



Naïve Bayes for text classification 


   “bag of words” model 

   The examples are category documents 

   Features: Vocabulary V = {w1, w2,…wm} 

   P(wj | ci) is the probability to have wj in a category i 


   Let us use the Laplace’s smoothing 

   Uniform distribution (p = 1/|V|) and m = |V| 

   That is each word is assumed to appear exactly one time in a 

category 



Training (version 1) 


   V is built using all training documents D 


   For each category ci  ∈ C 

      Let Di the document subset of D in ci  

      ⇒ P(ci) = |Di| / |D| 

   ni is the total number of words in Di  

      for each wj ∈ V, nij is the counts of wj in ci 

              ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)   



Testing 


   Given a test document X 

   Let n be the number of words of X 

   The assigned category is: 

     where aj is a word at the j-th position in X 

€ 

argmax
ci ∈C

P(ci) P(a j | ci
j=1

n

∏ )



Vector Spaces 



Definition (1) 


   A set V is a vector space over a field F (for example, the field of real 
or of complex numbers) if, given 


   an operation vector addition defined in V, denoted v + w (where v, w 
∈ V), and  


   an operation scalar multiplication in V, denoted a * v (where v ∈ V 
and a ∈ F),  


   the following properties hold for all a, b ∈ F and u, v, and w ∈ V: 

   v + w belongs to V. 

(Closure of V under vector addition.)  

   u + (v + w) = (u + v) + w. 

(Associativity of vector addition in V.)  

   There exists a neutral element 0 in V, such that for all elements v in V, 

v + 0 = v. 
(Existence of an additive identity element in V.)  



Definition (2) 


   For all v in V, there exists an element w in V, such that v + w = 0. 
(Existence of additive inverses in V.)  


   v + w = w + v. 
(Commutativity of vector addition in V.)  


   a * v belongs to V. 
(Closure of V under scalar multiplication.)  


   a * (b * v) = (ab) * v. 
(Associativity of scalar multiplication in V.)  


   If 1 denotes the multiplicative identity of the field F, then 1 * v = v. 
(Neutrality of one.)  


   a * (v + w) = a * v + a * w. 
(Distributivity with respect to vector addition.)  


   (a + b) * v = a * v + b * v. 
(Distributivity with respect to field addition.)  



An example of Vector Space 


   For all n Rn forms a vector space over R, with component-wise 
operations.  


   Let V be the set of all n-tuples, [v1,v2,v3,...,vn] where vi, for 
i={1,2,3,...n} is a member of R={real numbers}. Let the field be 
R, as well. 
Define Vector Addition: 
For all v, w, in V, define v+w=[v1+w1,v2+w2,v3+w3,...,vn+wn]. 
Define Scalar Multiplication: 
For all a in F and v in V, a*v=[a*v1,a*v2,a*v3,...,a*vn]. Then V is 
a Vector Space over R. 



Linear dependency 


   Linear combination: 

   α1 v1 + …+ αn vn = 0 for some α1…αn not all zero 
  ⇒ y = α1 v1 + …+ αn vn has a unique expression. 

   In case αi > 0 and the sum is 1 it is called convex 

combination 



Normed Vector Spaces 


   If V is a vector space over a field K, a norm on V is a function 
from V to R,  


   it associates each vector v in V with a real number, ||v||.  

   The norm must satisfy the following conditions: 


   For all a in K and all u and v in V,  
  1. ||v|| ≥ 0 with equality if and only if v = 0.  

 2. ||av|| = |a| ||v||.  
 3. ||u + v|| ≤ ||u|| + ||v||.  


   A useful consequence of the norm axioms is the inequality 

   ||u ± v|| ≥ | ||u|| - ||v|| |  


   for all vectors u and v. 



Inner Product Spaces  


   Let V be a vector space and u, v, and w be vectors in V and c 
be a constant.   


   Then, an inner product ( , ) on V is a function with domain 
consisting of pairs of vectors and range real numbers satisfying 
the following properties.   
  1.  (u, u)  >  0 with equality if and only if u  =  0. 
  2.  (u, v)  =  (v, u) 
  3.  (u + v, w)  =  (u, w) + (v, w) 
  4.  (cu, v)  =  (u, cv)  =  c(u, v) 



Example 


   Let V be the vector space consisting of all continuous functions with the 
standard + and *.  Then define an inner product by 

          


   For example:          


   The four properties follow immediately from the analogous property of the 
definite integral: 

         



Inner Product Properties 


    (v, 0)  =   0 


     


   If (v, u)  =   0, v,u  are called orthogonal 

   Schwarz Inequality:  


   [(v, u)]2 ≤  (v, v) (u, u) 


   The classical scalar product is the component-wise product 

   (x1 , x2, … ,xn) (y1 , y2, … ,yn) = (x1 y1 , x2 y2, … ,xn yn) 

),(|||| vvv =

||||||||
),(),cos(
vu
vuvu
⋅

=



Similarity Metrics 


   The simplest distance for continuous m-dimensional 
instance space is Euclidian distance. 


   The simplest distance for m-dimensional binary instance 
space is Hamming distance (number of feature values that 
differ). 


   For text, cosine similarity is typically most effective. 



END 



Training (version 2) 


   V is built using all training documents D 


   For each category ci  ∈ C 

      Let Di the document subset of D in ci  

      ⇒ P(ci) = |Di| / |D| 

   ni is the total number of pairs <w,d>, w ∈ d ∈ Di and w ∈ V. 


   For each wj ∈ V, 

 nij is the number of documents of ci containing wj that is the 
number of pairs <wj,d> such that d ∈ Di 

      ⇒ P(wj | ci) = (nij + 1) / (ni + |V|)   


